Как рассчитать минимально необходимую производительность вытяжного вентилятора и подобрать подходящее устройство?


ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

По способу работы, в настоящее время, вентиляционные схемы делятся на:

  1. Вытяжные. Для удаления использованного воздуха.
  2. Приточные. Для впуска чистого воздуха.
  3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.

В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

  1. Устройства для подогрева или охлаждения подаваемого воздуха.
  2. Фильтры для очистки запахов и примесей.
  3. Приборы для увлажнения и распределения воздуха по помещениям.

При расчёте вентиляции учитывают следующие величины:

  1. Расход воздуха в куб.м./час.
  2. Давление в воздушных каналах в атмосферах.
  3. Мощность подогревателя в квт-ах.
  4. Площадь сечения воздушных каналов в кв.см.

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.

Расчет вытяжной вентиляции пример

Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.

Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.

Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.

Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.

Допустим, в доме живут два человека, тогда:

V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).

V = S х Н = 20 х 2,5 = 50 куб.м.

Далее V х 2 (кратность) = 100 кб.м./ч. По другому – 40 кб.м./ч. (средняя активность) х 2 (человека) = 80 куб.м./час. Выбираем большее значение – 100 кб.м./ч.

В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.

Как рассчитать производительность вентилятора

Алгоритм подсчета следующий:

  1. Измерить точные размеры помещения.
  2. Умножить объем на установленную норму воздухообмена.
  3. Полученный результат и является требуемой продуктивностью вентиляционного агрегата.

Дополнительно учитывают сечение воздуховодов, их геометрическую конфигурацию, сопротивление фильтрующих элементов. Формула расчета мощности следующая: L = n*V, где:

  • L – нужная продуктивность системы;
  • n – предусмотренные СНиП нормативы воздухообмена;
  • V – общая кубатура помещения.

Пропускная способность установки определяется и диаметром воздушных каналов. Постоянно работающие вентиляторы для вентиляции должны быть не менее 100 мм.

Расчет производительности вытяжного вентилятора в жилых помещениях

Правильное вычисление требуемой производительности вентиляционного агрегата позволит обеспечить надлежащий КПД. Для этого требуется верно рассчитать объем воздуха, который следует постоянно обновлять. Важное требование к вытяжке – обеспечение полного обмена атмосферной смеси каждые 15 минут. Согласно действующим нормативам, на кухне этот показатель должен составлять не менее 9 раз в час.

В ванной достаточно 5-8 раз. Чтобы точно вычислить требуемую продуктивность климатического устройства, следует знать размер обслуживаемого помещения, который умножается на установленный показатель воздухообмена. Для кухни объемом 20 м³ расчет мощности осуществляется следующим образом: 20х9=180 м³/ч. Это минимально допустимое значение.

Определение объема помещения

Вычисление кубатуры помещения производится путем перемножения длины, ширины и высоты. Математическая формула следующая: V=a*b*c. Расчетная мощность вентилятора для ванной комнаты объемом 22,5 м³ должна составлять не менее 270 м³, что обеспечит полное обновление атмосферной смеси каждые 5 минут. Дополнительно в этом помещении требуется учитывать необходимость удаления водяного пара и загрязненного воздуха. Если выполнять вычисления без учета повышенной плотности отработанной атмосферной смеси, то вытяжная система может не справляться с нагрузкой.

Для ванной и кухни желательно выбрать вентилятор с запасом производительности, чтобы обеспечить надлежащее качество воздушной смеси в любых условиях. Конструкция вентиляционной системы тоже оказывает существенное влияние на производительность. Гофрированные стенки канала воздуховода забирают примерно 7-9% мощности устройства. Потери фильтров и шумопоглощающих элементов указываются в сопроводительной технической документации. Каждый прямой угол канала воздуховода забирает еще 2-3% мощности.

Подбор вентилятора по минимально необходимой производительности

В расчетную мощность вентиляционной системы закладывается определенный запас. На практике достаточно менее производительной установки. Вытяжной вентилятор на кухню или ванную должен справляться с экстремальными нагрузками, к которым относятся:

  • приготовление пищи;
  • работа духового шкафа;
  • принятие душа, связанное с интенсивным парообразованием.

Поэтому расчет производительности вентилятора осуществляется с некоторым запасом. В современных моделях вентиляционных систем обязательно имеется усиленный режим работы. Для обеспечения минимальной нормы в стандартных условиях достаточно хорошего притока воздуха и тяги в канале.

Снизить расходы и обеспечить надлежащий санитарный эффект позволяют интеллектуальные VAV-системы. Они имеют достаточный объем вентиляции и возможность ручной регулировки путем отключения или ограничения воздухообмена в отдельных помещениях. Необходимую производительность вентиляторов не следует определять на основе одной лишь простой формулы, в которой не учитываются дополнительные факторы. К ним причисляются:

  1. Принцип работы агрегата. Современные вентиляционные системы могут функционировать в режиме стандартного воздухообмена или рециркуляции, в котором производительность установки меньше, но ей требуется больше питающей мощности.
  2. Способ размещения. Расположение устройства в помещении тоже влияет на способность к обновлению атмосферной смеси. Кухонная вытяжка размещается непосредственно над плитой для повышения эффективности всасывания загрязненного воздуха.
  3. Энергопотребление. Самый экономичный вариант – осевой вентилятор для вытяжки.

В жилых помещениях часто устанавливают рыночную новинку – устройство центробежного типа.

Расчет производительности вентилятора для особых промышленных условий

При расчете требуемой производительности вентиляционной установки для сложных промышленных объектов предварительно составляют техническое задание, в которое закладывают предполагаемые условия функционирования климатической системы. Среди них:

  • положение объекта на местности;
  • предназначение каждого помещения;
  • компоновка и планировка сооружения;
  • свойства строительных материалов;
  • ориентировочное число людей, постоянно находящихся внутри здания;
  • специфика производства и особенности технологических процессов.

На основе этих данных выполняются вычисления требуемой мощности. Дополнительно в расчет принимают:

  1. Скорость движения воздушных потоков.
  2. Уровень шумности системы.
  3. Длину, геометрическую конфигурацию и диаметр вентиляционных каналов.
  4. Показатели давления.

Для каждого промышленного объекта эти факторы индивидуальны. Стандартная скорость движения воздушного потока – 2,5-4 м/с.

Учет количества людей, находящихся в помещении

На производительность вентиляционной установки влияет и число постоянно присутствующих в помещении людей. Существует специальная формула, учитывающая этот фактор. Выглядит она следующим образом: L=N*LH.

  • L – минимально требуемая мощность устройства;
  • N – число постоянно присутствующих на объекте людей;
  • LH – расчетный объем потребления атмосферного воздуха 1 человеком.

Норма воздушной смеси в спокойном состоянии составляет 30 м³/ч, при физической нагрузке организма – вдвое больше. Для объектов жилого типа за основу для расчета нужной мощности вытяжной системы принимают значение 60 м³/ч. В местах отдыха, например, в спальне, стандартным показателем считается 30 м³/ч, поскольку во время сна и при отсутствии двигательной активности потребление человеческим организмом кислорода существенно снижается.

Вентилятор для вытяжки, которая используется на кухне, должен иметь некоторый запас мощности, поскольку условия здесь постоянно меняются. Иногда требуется более высокая производительность, например, во время жарки пищи. На кухне или в пекарне объемом 30 м³ рекомендуется устанавливать вентилятор расчетной мощностью 400-800 м³/ч. Стандартные воздуховоды пропускают не больше 180 м³ в течение 1 часа.

Поэтому в помещениях технического предназначения используют специальные мощные рециркуляционные системы, прогоняющие атмосферную смесь через фильтрующие элементы. Они снижают показатель производительности. Поэтому к расчетной мощности добавляют примерно 40%. Таким образом, следует выбирать рециркуляционную систему паспортной продуктивностью в пределах 560-1120 м³/ч.

Повышенное количество влаги

Оснащение помещений повышенной влажности вытяжной системой имеет особенности. Для исключения возможности короткого замыкания в случае нарушения целостности изоляции электропроводки используют специальные вентиляторы в брызгозащищенном конструктивном исполнении. Такая модель препятствует проникновению капель и испарений в канал воздуховода.

Регулярное обновление воздуха в помещениях с плохо налаженной естественной вентиляцией не позволит оседать конденсату на кафельные и полированные поверхности, снизит вероятность образования плесени. Современные модели вытяжных систем, предназначенные для помещений такого типа, оснащаются датчиком влажности. В ванной комнате площадью свыше 5 м² следует позаботиться об эффективном удалении отработанной воздушной смеси. Рекомендуется вытяжной вентилятор заявленной производительностью не менее 320 м³/ч.

Расчет вытяжной вентиляции производственных помещений

При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

Выбираем большее – 180 куб.м./час.

Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

  • 100 – 500 куб.м./час. – квартирные.
  • 1000 – 2000 куб.м./час. – для домов и усадеб.
  • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.

Чтобы соблюсти минимальную норму, достаточно обеспечить в санузле хороший приток воздушных масс

Фото: https://shop.alterair.ua/ru/ventiljacija/ventiljatory/ventiljator-vannaja/

В ванной комнате по строительным нормативам обязательно должна быть вентиляционная система. Оборудование состоит из нескольких частей. Одна из составляющих — это вытяжной вентилятор. Чтобы правильно выбрать вентиляционную систему для санузла, необходимо сделать правильный расчет мощности вытяжного вентилятора для ванной.

Как рассчитать мощность вентилятора для ванной:

  1. Надо взять рулетку и измерять размеры санузла, чтобы выяснить объем в метрах.
  2. Необходимо узнать, сколько метров комната в длину, ширину и высоту.
  3. Первый показатель умножают на высоту и ширину.
  4. В документации БТИ указывается площадь помещений.

Пример: площадь ванной комнаты 6 м². Высота — 3 метра. Если умножить первое значение на второе, то получим объем санузла: 6×3=18 м³. Также необходимо выяснить норму воздухообмена.

Расчет приточно вытяжной вентиляции

ВОЗДУХОНАГРЕВАТЕЛЬ

В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.

Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.

Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой ( в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:

N /V х 2,98 где 2,98 – константа.

Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.

Далее 2000 вт./ 180 кб.м./ч. х 2,98 = 33 град.ц.

Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.

Выбор вытяжного вентилятора по мощности

Нормативы, которые получают по расчетам, слегка завышены. На практике не всегда удается найти прибор с необходимыми показателями мощности. В ванной комнате часто устанавливают оборудование с функцией усиленной тяги.

Чтобы соблюсти минимальную норму, достаточно обеспечить в санузле хороший приток воздушных масс. Также должна быть отличная тяга в канале вентиляции. Когда будет рассчитан показатель мощности, необходимо сравнить с требованиями СНиПа и выбрать максимальные значения.

Чтобы уменьшить затраты на электроэнергию, можно купить вентилятор с небольшой производительностью. Но придется дополнительно использовать современную VAV-систему. Оборудование будет частично или полностью отключать вентиляцию помещений по необходимости.

ДАВЛЕНИЕ И СЕЧЕНИЕ

На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

При расчёте диаметра каналов эмпирически принимают следующие величины:

  • Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
  • Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.

При этом добиваются скорости потока 2,4 – 4,2 м/сек.

Виды вентиляционных систем по способу создания тяги

Движение воздушных масс возникает в результате разницы давления между слоями воздуха. Чем больше градиент, тем сильнее побуждающая сила. Для ее создания применяют естественную, принудительную или комбинированную систему вентиляции, где используются приточные, вытяжные или рециркуляционные (смешанные) способы удаления воздуха. В промышленных и общественных зданиях предусмотрены аварийная и противодымная вентиляции.

Естественное вентилирование

Естественная вентиляция помещений происходит согласно физическим законам — за счет разницы температур и давлений между наружным и внутренним воздухом. Еще во времена Римской империи инженеры устанавливали в домах знати подобия шахт, которые служили для проветривания.

В комплекс естественной вентиляции входят наружные и внутренние проемы, фрамуги, форточки, стеновые и оконные клапаны, вытяжные шахты, вентканалы, дефлекторы.


Естественная вентиляция Источник rumahku.com

Качество вентилирования зависит от объема проходящих воздушных масс и траектории их движения. Самым благоприятным является вариант, когда окна и двери расположены в противоположных концах комнаты. В этом случае при циркуляции воздуха происходит полноценная его замена по всему помещению.

Вытяжные каналы размещают в помещениях с наибольшим уровнем загрязнения, неприятных запахов и влажности — кухнях, санузлах. Приточный воздух поступает из других комнат и выдавливает отработанный на улицу.

Чтобы вытяжка работала в нужном режиме, ее верх должен находиться выше крыши дома на 0,5-1 м. Это создает необходимую разницу давлений для перемещения воздуха.

Естественная вентиляция бесшумна, не потребляет электроэнергии, не требует больших вложений на устройство. Воздушные массы, проникающие извне, не приобретают дополнительных свойств — не подогреваются, не очищаются и не увлажняются.

Рециркуляция воздуха ограничивается пределами одной квартиры. Из соседних помещений подсоса быть не должно.

Принудительная вентиляция

Принудительная вентиляция стала использоваться с середины 19 века. Сначала большие вентиляторы применяли на рудниках, в трюмах кораблей, сушильных цехах. С появлением электрических двигателей в проветривании помещений произошла революция. Появились регулируемые приборы не только для промышленных, но и для бытовых нужд.


Принудительная вентиляция Источник stroy-podskazka.ru

Степень защиты

Опасность для вентиляционных установок могут представлять два основных фактора:

  • попадание твердых предметов;
  • воздействие воды.

Международный код IP (IngressProtectionRating) введен для обозначения степени защиты устройств от воздействия окружающей среды за счет конструктивных особенностей.

Содержит буквенные и цифровые обозначения. Указывается в паспорте устройства и наносится на корпус изделия.

Первая цифра имеет значение от 1 до 6 и означает защиту от попадания твердых частиц и посторонних предметов

Таблица 1. Расшифровки первого числового значения кода защиты.

Цифровые значения Расшифровка
0 Отсутствие любой защиты
1 Предохраняет от проникновения предметов, размером более 50 мм
2 Предохранение от проникновения предметов, размером более 12 мм
3 Защита от проникновения предметов, размером более 2,5 мм
4 От попадания мусора, размером более 1 мм
5 Частичная защита от попадания пыли
6 Полная защита от пыли

Таблица 2 .Расшифровка второй цифры кода:

Цифровые значения Расшифровка
0 Нет защиты от влаги
1 Защита от вертикальных капель
2 От вертикальных капель, падающих под углом, не более 15° от вертикали
3 От брызг, под углом не больше 60° от вертикали
4 Защита от капель и брызг под любыми углами
5 Попадание струй под любым наклоном не причиняет вреда
6 Попадание воды в устройство не мешает работе оборудования
7 Устройство может работать при кратковременном погружении в воду
8 Полная водонепроницаемость

Например, код IP48 означает, что устройство защищено от проникновения частиц, размером более1 мм и может работать под водой.

Выбор степени защиты устройства зависит от места установки и условий эксплуатации вентиляторов.

Применение осевых (аксиальных)вентиляторов

Данные устройства отличаются от центробежных не только принципом действия, но и производительностью, размерами. Они более компактны, неприхотливы к месту установки (подходят для влажных помещений), не требуют устройства специального места для монтажа. Также, большинство моделей элементарны в установке, не требующей специальных навыков.


Осевой вентилятор

Устройство представляет собой двигатель, во время работы которого вращается ось, с насаженным на ней винтом и крыльчаткой. Этот узел расположен в корпусе, имеющем круглое сечение. Во время работы воздух создает завихрения, продвигаясь вдоль оси. Крыльчатка выполнена из достаточно легкого материала, благодаря чему не создается большого сопротивления при ее вращении.

Аксиальные вентиляторы делятся на потолочные, настенные, оконные, канальные. Применяются для улучшения качества вентиляции, когда естественной вытяжки не достаточно. Они обладают такими преимуществами:

  • Компактные размеры.
  • Невысокий уровень шума.
  • Простота установки.
  • Имеется защита двигателя от влаги.
  • Настенные модели без труда монтируются в вентиляционный канал.
  • Многие модели снабжены обратным клапаном (в неработающем состоянии устройства – они перекрывают поступление воздуха извне).
  • Небольшой расход электроэнергии.

Где и для чего используются промышленные вентиляторы?

По названию можно сразу догадаться, что промышленные вентиляторы применяются в основном на производстве. Они вытягивают из помещения загрязненный воздух, который нередко содержит вредные и опасные для здоровья вещества и тем самым обеспечивают комфортный микроклимат для всех сотрудников предприятия. В итоге у всех работников улучшается самочувствие и повышается продуктивность.

Также промышленные вентиляторы устанавливаются в складских помещениях и в заведениях, работающих в сфере сервисного обслуживания. Задача точно такая же: обеспечение полноценного воздухообмена и создание комфортного для работы микроклимата.


Рекомендуем товар Промышленный вентилятор Systemair DKEX 250-4 Centrifugal (ATEX)

В наличии

Расход воздуха, м³/час: 2365 | Уровень шума, дБ: 58.90 | Вид: взрывозащищенный | Тип: центробежный | Диаметр, мм: 250 |

Подбираем высоту труб

Следующий шаг – определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

  • p – гравитационное давление в канале, Па;
  • Н – перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд – плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81 х 4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап – аэродинамический расчет отводных каналов. Задача – выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

  • Δp – общие потери давления в шахте;
  • R – удельное сопротивление трению проходящего потока, Па/м;
  • Н – высота канала, м;
  • ∑ξ – сумма коэффициентов местных сопротивлений;
  • Pv – давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим значение динамического давления по формуле Pv = 1.2 х 1² / 2 = 0.6 Па.
  2. Сопротивление от трения R находим по таблице, ориентируясь на показатели динамического напора 0.6 Па, скорости потока 1 м/с и диаметра воздухопровода 225 мм. R = 0.078 Па/м (обозначено зеленым кружочком).
  3. Местные сопротивления вытяжной шахты – это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей – величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
  4. Окончательное вычисление: Δp = 0.078 Па/м х 4 м + 1.6 х 0.6 Па = 1.27 Па.

Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Сила тяги p = 2.75 Па значительно больше, чем потери давления (сопротивление) Δp = 1.27 Па, шахта высотой 4 метра слишком высока, строить такую бессмысленно.

Поскольку цифры отличаются вдвое (грубо), укоротим вентканал до 2 м, снова произведем перерасчет:

  1. Располагаемое давление p = 9.81 х 2 (1.27 — 1.2) = 1.37 Па.
  2. Удельное сопротивление R и местные коэффициенты ξ остаются прежними.
  3. Δp = 0.078 Па/м х 2 м + 1.6 х 0.6 Па = 1.15 Па.

Напор природной тяги 1.37 Па превышает сопротивление системы Δp = 1.15 Па, значит, шахта двухметровой высоты станет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Замечание. Укорачивать воздуховод до 1 м не стоит, соотношение изменится в другую сторону: p = 0.69 Па, Δp = 1.04 Па, силы тяги не хватит.

Канал вентиляции Ø225 мм можно разделить на 2 меньших трубы, но не по диаметру, а по сечению. Получаем 2 круглых вентканала 150—160 мм, как сделано на фото. Высота обеих шахт остается неизменной — 2 м.

Особенности центробежных вентиляторов


Центробежный вентилятор
Агрегаты, которые применяют для улучшения работы вентиляционной системы или участвующие в процессе воздухообмена делятся на центробежные и осевые. Центробежные вентиляторы для вентиляции помещений используются в бытовых, промышленных, офисных и других зданиях. Форма их корпуса представляет собой улитку, но, несмотря на такую особенность конструкция достаточно простая. У корпуса имеется два отверстия: одно воздух всасывает, другое – выпускает. Кроме того, есть двигатель и лопасти. Механизм действия вентилятора таков: при включении двигатель начинает вращать лопасти, которые всасывают воздух и направляют его непосредственно в корпус под действием центробежной силы. Далее, воздух направляется в воздуховод и, через систему фильтров, удаляется в атмосферу.

Центробежные вентиляторы подразделяются:

  • По создаваемому давлению (низкого – до 1 кПа, среднего – 1-3 кПа, высокого – 3-12 кПа).
  • По назначению (общего, специального).
  • По направлению всасывания (одностороннего, двустороннего).
  • По числу ступеней (одноступенчатые, многоступенчатые).

В основном, центробежные агрегаты применяют для вентиляции промышленных цехов или помещений, где необходимы вытяжки большой производительности – офисные и торговые центры, общественные, учебные учреждения. В быту их используют в частных коттеджах для поддержания требуемого микроклимата в ванной, туалете, кухне, бассейне.

Важно! Так как, в основном корпус вентилятора выполняется из металла, то использование его во влажных помещениях ограничено. Потому, при приобретении устройства перед установкой, необходимо выяснить подвергается ли корпус или составляющие его части коррозии.

Как упростить задачу — советы

Вы могли убедиться, что расчеты и организация воздухообмена в здании – вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:

  1. Первые 3 этапа придется пройти в любом случае – выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
  2. Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — правильно рассчитайте диаметры и просто выведите воздухопроводы на высоту не менее 3 метров над заборными решетками.
  3. Внутри здания старайтесь использовать пластиковые трубы – благодаря гладким стенкам они практически не сопротивляются движению газов.
  4. Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
  5. Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.

Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.

Расчет тепловой нагрузки

Расчет тепловой нагрузки на вентиляцию осуществляется по формуле:

Qв= Vн * k * p * Cр(tвн – tнро),

в формуле расчета тепловой нагрузки на вентиляцию – внешний объем строения в кубометрах, k – кратность воздухообмена, tвн – температура в здании средняя, в градусах Цельсия, tнро – температура воздуха снаружи, используемая при расчетах отопления, в градусах Цельсия, р – плотность воздуха, в кгкубометр, Ср – теплоемкость воздуха, в кДжкубометр Цельсия.

Если температура воздуха ниже tнро снижается кратность обмена воздуха, а показатель расхода тепла считается равной , постоянной величиной.

Если при расчете тепловой нагрузки на вентиляцию невозможно уменьшить кратность воздухообмена, расход тепла рассчитывают по температуре отопления.

Расход тепла на вентиляцию

Удельный годовой расход тепла на вентиляцию рассчитывается так:

Q= * b * (1-E),

в формуле для расчета расхода тепла на вентиляцию Qo – общие теплопотери строения за сезон отопления, Qb – поступления тепла бытовые, Qs – поступления тепла снаружи (солнце), n – коэффициент тепловой инерции стен и перекрытий, E – понижающий коэффициент. Для индивидуальных отопительных систем 0,15, для центральных 0,1, b – коэффициент теплопотерь:

  • 1,11 – для башенных строений;
  • 1,13 – для строений многосекционных и многоподъездных;
  • 1,07 – для строений с теплыми чердаками и подвалами.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]